skip to main content


Search for: All records

Creators/Authors contains: "Anastasaki, Athina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polymer molecular weight, or chain length distributions, are a core characteristic of a polymer system, with the distribution being intimately tied to the properties and performance of the polymer material. A model is developed for the ideal distribution of polymers made using reversible activation/deactivation of chain ends, with monomer added to the active form of the chain end. The ideal distribution focuses on living chains, with the system having minimal impact from irreversible termination or transfer. This model was applied to ATRP, RAFT, and cationic polymerizations, and was also used to describe complex systems such as blended polymers and block copolymers. The model can easily and accurately be fitted to molecular weight distributions, giving information on the ratio of propagation to deactivation, as well as the mean number of times a chain is activated/deactivated under the polymerization conditions. The mean number of activation cycles per chain is otherwise difficult to assess from conversion data or molecular weight distributions. Since this model can be applied to wide range of polymerizations, giving useful information on the underlying polymerization process, it can be used to give fundamental insights into macromolecular synthesis and reaction outcomes. 
    more » « less
  2. null (Ed.)
  3. The self-assembly of block polymers into well-ordered nanostructures underpins their utility across fundamental and applied polymer science, yet only a handful of equilibrium morphologies are known with the simplest AB-type materials. Here, we report the discovery of the A15 sphere phase in single-component diblock copolymer melts comprising poly(dodecyl acrylate)− block −poly(lactide). A systematic exploration of phase space revealed that A15 forms across a substantial range of minority lactide block volume fractions ( f L = 0.25 − 0.33) situated between the σ-sphere phase and hexagonally close-packed cylinders. Self-consistent field theory rationalizes the thermodynamic stability of A15 as a consequence of extreme conformational asymmetry. The experimentally observed A15−disorder phase transition is not captured using mean-field approximations but instead arises due to composition fluctuations as evidenced by fully fluctuating field-theoretic simulations. This combination of experiments and field-theoretic simulations provides rational design rules that can be used to generate unique, polymer-based mesophases through self-assembly. 
    more » « less
  4. ABSTRACT

    Regulating the aqueous polymerization of acrylic acid (AA) is a major opportunity for future materials design, requiring the development of scalable, industry‐oriented procedures that afford modest molar mass and dispersity control without long reaction times and environmentally demanding conditions. To address these challenges, this report presents the rapid copolymerization of aqueous mixtures of AA and sodium acrylate using an inexpensive and scalable protocol based on alkyl iodides/sodium iodide as mediators in water. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1414–1419

     
    more » « less
  5. ABSTRACT

    A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use oftert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2017,55, 801–807

     
    more » « less